UNIVERSITY OF TORONTO

MACHINE LEARNING GROUP,

TINGWU WANG

Trust Region Policy Optimization

Contents

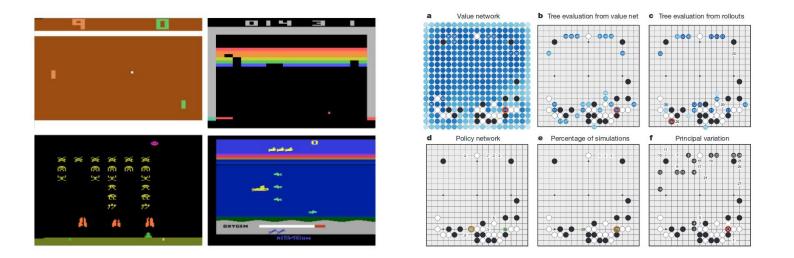
- 1. Introduction
 - 1. Problem Domain: Locomotion
 - 2. Related Work
- 2. TRPO Step-by-step
 - 1. The Preliminaries
 - 2. Find the Lower-Bound in General Stochastic policies
 - 3. Optimization of the Parameterized Policies
 - 4. From Math to Practical Algorithm
 - 5. Tricks and Efficiency
 - 6. Summary
- 3. Misc
 - 1. Results and Problems of TRPO

Introduction

- 1. Introduction
 - 1. Problem Domain: Locomotion
 - 2. Related Work
- 2. TRPO Step-by-step
 - 1. The Preliminaries
 - 2. Find the Lower-Bound in General Stochastic policies
 - 3. Optimization of the Parameterized Policies
 - 4. From Math to Practical Algorithm
 - 5. Tricks and Efficiency
 - 6. Summary
- 3. Misc
 - 1. Results and Problems of TRPO

Problem Domain: Locomotion

- 1. The two action domains in reinforcement learning:
 - 1. Discrete action space
 - 1. Only several actions are available (up, down, left, right)
 - 2. Q-value based methods (DQN [1], or DQN + MCTS [2])



Problem Domain: Locomotion

- 1. The two action domains in reinforcement learning:
 - 1. Discrete action space
 - 2. Continuous action space
 - 1. One of the most interesting problems: locomotion
 - 2. MuJuCo: A physics engine for model-based control [3]
 - 3. TRPO [4] (today's focus)
 - 1. One of the most important baselines in model-free continuous control problem [5]
 - 2. It works for discrete action space too

Humanoid-v1 Make a 3D two-legged robot walk.

Swimmer-v1 Make a 2D robot swim.

Hopper-v1 Make a 2D robot hop.

Ant-v1 Make a 3D four-legged robot walk.

.....

Problem Domain: Locomotion

- 1. The two action domains in reinforcement learning:
 - 1. Discrete action space
 - 2. Continuous action space
 - 3. Difference between Discrete & Continuous
 - 1. Raw-pixel Input
 - 1. Control versus perception
 - 2. Dynamical Model
 - 1. Game dynamics versus physical models
 - 3. Reward Shaping
 - 1. Zero-one reward versus continous reward at evert time step

Related Work

- 1. REINFORCE algorithm [6] $\widehat{\nabla_{\theta}\eta(\pi_{\theta})} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi(a_{t}^{i}|s_{t}^{i};\theta)(R_{t}^{i}-b_{t}^{i})$
- 2. Deep Deterministic Policy Gradient [7]

$$\widehat{\nabla_{\theta} \eta(\mu_{\theta})} = \sum_{i=1}^{B} \left. \nabla_{a} Q_{\phi}(s_{i}, a) \right|_{a = \mu_{\theta}(s_{i})} \nabla_{\theta} \mu_{\theta}(s_{i})$$

- 3. TNPG method [8]
 - 1. Very similar to the TRPO
 - 2. TRPO uses a fixed KL divergence rather than a fixed penalty coefficient
 - 3. Similar performance according to Duan [9]

TROO Step-by-step

- 1. Introduction
 - 1. Problem Domain: Locomotion
 - 2. Related Work
- 2. TRPO Step-by-step
 - 1. The Preliminaries
 - 2. Find the Lower-Bound in General Stochastic policies
 - 3. Optimization of the Parameterized Policies
 - 4. From Math to Practical Algorithm
 - 5. Tricks and Efficiency
 - 6. Summary
- 3. Misc
 - 1. Results and Problems of TRPO

The Preliminaries

1. The objective function to optimize

$$\eta(\pi) = \mathbb{E}_{s_0, a_0, \dots} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right], \text{ where}$$
$$s_0 \sim \rho_0(s_0), \ a_t \sim \pi(a_t | s_t), \ s_{t+1} \sim P(s_{t+1} | s_t, a_t)$$

2. Can we expresses the expected return of another policy in terms of the advantage over the original policy?

Yes, orginally proven in [8] (see whiteboard 1). It shows that a guaranteed increase in the performance is possible.

$$\eta(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{s_0, a_0, \dots \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right] = \eta(\pi) + \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) A_{\pi}(s, a).$$

The Preliminaries

- 3. Can we remove the dependency of discounted visitation frequencies under the new policy?
 - 1. The local approximation

$$L_{\pi}(\tilde{\pi}) = \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a).$$
$$L_{\pi_{\theta_{0}}}(\pi_{\theta_{0}}) = \eta(\pi_{\theta_{0}}),$$
$$\nabla_{\theta} L_{\pi_{\theta_{0}}}(\pi_{\theta}) \Big|_{\theta = \theta_{0}} = \nabla_{\theta} \eta(\pi_{\theta}) \Big|_{\theta = \theta_{0}}.$$

2. The lower bound from conservative policy iteration [8]

$$\pi_{\text{new}}(a|s) = (1 - \alpha)\pi_{\text{old}}(a|s) + \alpha\pi'(a|s).$$

$$\eta(\pi_{\text{new}}) \ge L_{\pi_{\text{old}}}(\pi_{\text{new}}) - \frac{2\epsilon\gamma}{(1 - \gamma)^2}\alpha^2$$

where $\epsilon = \max_s \left| \mathbb{E}_{a \sim \pi'(a|s)} \left[A_{\pi}(s, a) \right] \right|.$

Find the Lower-Bound in General Stochastic policies

1. Can we move the be extended to general stochastic policies, rather than just mixture polices? (see whiteboard)

$$\pi_{\text{new}}(a|s) = (1 - \alpha)\pi_{\text{old}}(a|s) + \alpha\pi'(a|s).$$

$$\eta(\pi_{\text{new}}) \ge L_{\pi_{\text{old}}}(\pi_{\text{new}}) - \frac{2\epsilon\gamma}{(1 - \gamma)^2}\alpha^2$$

where $\epsilon = \max_s \left|\mathbb{E}_{a \sim \pi'(a|s)}\left[A_{\pi}(s, a)\right]\right|$

Theorem 1. Let $\alpha = D_{TV}^{max}(\pi_{old}, \pi_{new})$. Then the following bound holds:

$$\mu(\pi_{\text{new}}) \ge L_{\pi_{\text{old}}}(\pi_{\text{new}}) - \frac{4\epsilon\gamma}{(1-\gamma)^2}\alpha^2$$
where $\epsilon = \max_{s,a} |A_{\pi}(s,a)|$
(8)

2. Maybe even make the equation simpler?

$$\eta(\tilde{\pi}) \ge L_{\pi}(\tilde{\pi}) - CD_{\mathrm{KL}}^{\max}(\pi, \tilde{\pi}),$$

where $C = \frac{4\epsilon\gamma}{(1-\gamma)^2}.$

(later we make it even easier by approximate the maximum of KL using the average of KL)

Find the Lower-Bound in General Stochastic policies

3. Now what's the objective function we are trying to maximize?

let
$$M_i(\pi) = L_{\pi_i}(\pi) - CD_{\mathrm{KL}}^{\max}(\pi_i, \pi)$$
. Then
 $\eta(\pi_{i+1}) \ge M_i(\pi_{i+1})$ by Equation (9)
 $\eta(\pi_i) = M_i(\pi_i)$, therefore,
 $\eta(\pi_{i+1}) - \eta(\pi_i) \ge M_i(\pi_{i+1}) - M(\pi_i)$.

$$\begin{split} \eta(\tilde{\pi}) &\geq L_{\pi}(\tilde{\pi}) - CD_{\mathrm{KL}}^{\max}(\pi, \tilde{\pi}), \\ \text{where } C &= \frac{4\epsilon\gamma}{(1-\gamma)^2}. \\ L_{\pi}(\tilde{\pi}) &= \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a). \\ L_{\pi_{\theta_0}}(\pi_{\theta_0}) &= \eta(\pi_{\theta_0}), \\ \nabla_{\theta} L_{\pi_{\theta_0}}(\pi_{\theta}) \big|_{\theta=\theta_0} &= \nabla_{\theta} \eta(\pi_{\theta}) \big|_{\theta=\theta_0}. \end{split}$$

Guaranteed Improvement! (minorization-maximization algorithm)

Optimization of the Parameterized Policies

 In practice, if we used the penalty coefficient C recommended by the theory above, the step sizes would be very small.

 $\underset{\theta}{\text{maximize}} \left[L_{\theta_{\text{old}}}(\theta) - CD_{\text{KL}}^{\max}(\theta_{\text{old}}, \theta) \right]$

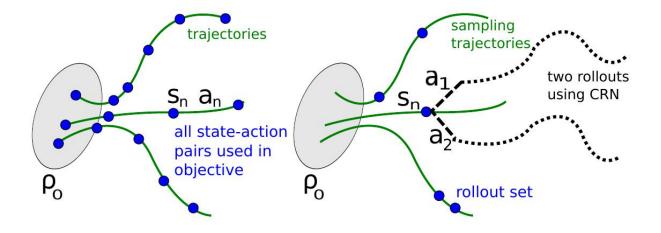
- 2. One way to take larger steps in a robust way is to use a constraint on the KL divergence between the new policy and the old policy, i.e., a trust region constraint
 - 1. Use the average KL instead of the maximum of the KL (heuristic approximation)

$$\begin{split} & \underset{\theta}{\operatorname{maximize}} \, L_{\theta_{\mathrm{old}}}(\theta) & \underset{\theta}{\operatorname{maximize}} \, L_{\theta_{\mathrm{old}}}(\theta) \\ & \text{subject to } \, D_{\mathrm{KL}}^{\max}(\theta_{\mathrm{old}}, \theta) \leq \delta. & \text{subject to } \, \overline{D}_{\mathrm{KL}}^{\rho_{\theta_{\mathrm{old}}}}(\theta_{\mathrm{old}}, \theta) \leq \delta. \end{split}$$

From Math to Practical Algorithm

1. Sample-Based Estimation of the Objective and Constraint

$$\begin{aligned} & \underset{\theta}{\text{maximize}} \mathbb{E}_{s \sim \rho_{\theta_{\text{old}}}, a \sim q} \left[\frac{\pi_{\theta}(a|s)}{q(a|s)} Q_{\theta_{\text{old}}}(s, a) \right] \\ & \text{subject to} \ \mathbb{E}_{s \sim \rho_{\theta_{\text{old}}}} \left[D_{\text{KL}}(\pi_{\theta_{\text{old}}}(\cdot|s) \parallel \pi_{\theta}(\cdot|s)) \right] \leq \delta. \end{aligned}$$



Tricks and Efficiency

- 1. Search for the next parameter maximize $L(\theta)$ subject to $\overline{D}_{\mathrm{KL}}(\theta_{\mathrm{old}}, \theta) \leq \delta$.
 - 1. Compute a search direction, using a linear approximation to objective and quadratic approximation to the constraint

Ax = g $\overline{D}_{\mathrm{KL}}(\theta_{\mathrm{old}}, \theta) \approx \frac{1}{2} (\theta - \theta_{\mathrm{old}})^T A(\theta - \theta_{\mathrm{old}}) \quad A_{ij} = \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} \overline{D}_{\mathrm{KL}}(\theta_{\mathrm{old}}, \theta)$

- 2. Use conjugate gradient algorithm to solve Ax = b
- 3. Get the maximal step length and decay exponentially

$$\begin{split} \delta &= \overline{D}_{\mathrm{KL}} \approx \frac{1}{2} (\beta s)^T A(\beta s) = \frac{1}{2} \beta^2 s^T A s \\ \beta &= \sqrt{2\delta/s^T A s} \\ L_{\theta_{\mathrm{old}}}(\theta) - \mathcal{X}[\overline{D}_{\mathrm{KL}}(\theta_{\mathrm{old}}, \theta) \leq \delta] \end{split}$$

Summary

1. The original objective

$$\eta(\pi) = \mathbb{E}_{s_0, a_0, \dots} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t) \right], \text{ where}$$
$$s_0 \sim \rho_0(s_0), \ a_t \sim \pi(a_t | s_t), \ s_{t+1} \sim P(s_{t+1} | s_t, a_t)$$

2. The objective of another policy in terms of the advantage over the original policy

$$\eta(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{s_0, a_0, \dots \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t A_{\pi}(s_t, a_t) \right] = \eta(\pi) + \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) A_{\pi}(s, a).$$

3. Remove the dependency on the trajectories of new policy.

$$L_{\pi}(\tilde{\pi}) = \eta(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$
$$L_{\pi_{\theta_{0}}}(\pi_{\theta_{0}}) = \eta(\pi_{\theta_{0}}),$$
$$\nabla_{\theta} L_{\pi_{\theta_{0}}}(\pi_{\theta}) \Big|_{\theta=\theta_{0}} = \nabla_{\theta} \eta(\pi_{\theta}) \Big|_{\theta=\theta_{0}}.$$

Summary

4. Find the lower-bound that guarantees the improvement

let $M_i(\pi) = L_{\pi_i}(\pi) - CD_{\text{KL}}^{\max}(\pi_i, \pi)$. Then $\eta(\pi_{i+1}) \ge M_i(\pi_{i+1})$ by Equation (9) $\eta(\pi_i) = M_i(\pi_i)$, therefore, $\eta(\pi_{i+1}) - \eta(\pi_i) \ge M_i(\pi_{i+1}) - M(\pi_i)$.

5. Sample-based estimation

$$\begin{aligned} & \underset{\theta}{\text{maximize}} \mathbb{E}_{s \sim \rho_{\theta_{\text{old}}}, a \sim q} \left[\frac{\pi_{\theta}(a|s)}{q(a|s)} Q_{\theta_{\text{old}}}(s, a) \right] \\ & \text{subject to} \ \mathbb{E}_{s \sim \rho_{\theta_{\text{old}}}} \left[D_{\text{KL}}(\pi_{\theta_{\text{old}}}(\cdot|s) \parallel \pi_{\theta}(\cdot|s)) \right] \leq \delta. \end{aligned}$$

6. Using line-search (Approximation, Fisher matrix, Conjugate gradient)
$$\begin{split} \delta &= \overline{D}_{\mathrm{KL}} \approx \frac{1}{2} (\beta s)^T A(\beta s) = \frac{1}{2} \beta^2 s^T A s \\ \beta &= \sqrt{2\delta/s^T A s} \\ L_{\theta_{\mathrm{old}}}(\theta) - \mathcal{X}[\overline{D}_{\mathrm{KL}}(\theta_{\mathrm{old}}, \theta) \leq \delta] \end{split}$$

Misc

- 1. Introduction
 - 1. Problem Domain: Locomotion
 - 2. Related Work
- 2. TRPO Step-by-step
 - 1. The Preliminaries
 - 2. Find the Lower-Bound in General Stochastic policies
 - 3. Optimization of the Parameterized Policies
 - 4. From Math to Practical Algorithm
 - 5. Tricks and Efficiency
 - 6. Summary
- 3. Misc
 - 1. Results and Problems of TRPO

Results and Problems of TRPO

- 1. Results
 - 1. One of the most successful baselines in locomotion
- 2. Problems
 - 1. Sample inefficiency
 - 2. Unable to scale to big network

Task	Random	REINFORCE	TNPG	RWR	REPS	TRPO	CEM	CMA-ES	DDPG
Cart-Pole Balancing	77.1 ± 0.0	4693.7 ± 14.0	3986.4 ± 748.9	4861.5 ± 12.3	565.6 ± 137.6	4869.8 ± 37.6	4815.4 ± 4.8	2440.4 ± 568.3	4634.4 ± 87.8
Inverted Pendulum*	-153.4 ± 0.2	13.4 ± 18.0	209.7 ± 55.5	84.7 ± 13.8	-113.3 ± 4.6	247.2 ± 76.1	38.2 ± 25.7	$-40.1\pm$ 5.7	40.0 ± 244.6
Mountain Car	-415.4 ± 0.0	-67.1 ± 1.0	-66.5 ± 4.5	-79.4 ± 1.1	-275.6 ± 166.3	-61.7 ± 0.9	-66.0 ± 2.4	$-85.0\pm$ 7.7	-288.4 ± 170.3
Acrobot	-1904.5 ± 1.0	-508.1 ± 91.0	-395.8 ± 121.2	-352.7 ± 35.9	-1001.5 ± 10.8	-326.0 ± 24.4	-436.8 ± 14.7	-785.6 ± 13.1	-223.6 ± 5.8
Double Inverted Pendulum*	149.7 ± 0.1	4116.5 ± 65.2	4455.4 ± 37.6	3614.8 ± 368.1	446.7 ± 114.8	$4412.4~\pm~50.4$	2566.2 ± 178.9	1576.1 ± 51.3	2863.4 ± 154.0
Swimmer*	-1.7 ± 0.1	92.3 ± 0.1	96.0 ± 0.2	60.7± 5.5	3.8 ± 3.3	96.0 ± 0.2	68.8± 2.4	64.9± 1.4	85.8± 1.8
Hopper	8.4 ± 0.0	714.0 ± 29.3	1155.1 ± 57.9	553.2 ± 71.0	86.7 ± 17.6	1183.3 ± 150.0	63.1 ± 7.8	20.3 ± 14.3	267.1 ± 43.5
2D Walker	-1.7 ± 0.0	506.5 ± 78.8	1382.6 ± 108.2	136.0 ± 15.9	-37.0 ± 38.1	1353.8 ± 85.0	84.5 ± 19.2	77.1 ± 24.3	318.4 ± 181.6
Half-Cheetah	-90.8 ± 0.3	1183.1 ± 69.2	1729.5 ± 184.6	376.1 ± 28.2	34.5 ± 38.0	1914.0 ± 120.1	330.4 ± 274.8	441.3 ± 107.6	2148.6 ± 702.7
Ant*	13.4 ± 0.7	548.3 ± 55.5	706.0 ± 127.7	37.6 ± 3.1	39.0 ± 9.8	730.2 ± 61.3	49.2 ± 5.9	17.8 ± 15.5	326.2 ± 20.8
Simple Humanoid	41.5 ± 0.2	128.1 ± 34.0	255.0 ± 24.5	93.3 ± 17.4	28.3 ± 4.7	269.7 ± 40.3	60.6 ± 12.9	28.7 ± 3.9	99.4 ± 28.1
Full Humanoid	13.2 ± 0.1	262.2 ± 10.5	288.4 ± 25.2	$46.7\pm$ 5.6	41.7 ± 6.1	287.0 ± 23.4	36.9 ± 2.9	$N/A \pm N/A$	119.0 ± 31.2
Cart-Pole Balancing (LS)*	77.1 ± 0.0	420.9 ± 265.5	945.1 ± 27.8	68.9± 1.5	898.1 ± 22.1	960.2 ± 46.0	227.0 ± 223.0	68.0± 1.6	2
Inverted Pendulum (LS)	-122.1 ± 0.1	-13.4 ± 3.2	0.7 ± 6.1	$-107.4\pm$ 0.2	-87.2 ± 8.0	4.5 + 4.1	-81.2 ± 33.2	$-62.4\pm$ 3.4	
Mountain Car (LS)	-83.0 ± 0.0	-81.2 ± 0.6	-65.7 ± 9.0	$-81.7\pm$ 0.1	-82.6 ± 0.4	-64.2 ± 9.5	-68.9 ± 1.3	-73.2 ± 0.6	
Acrobot (LS)*	-393.2 ± 0.0	-128.9 ± 11.6	-84.6 ± 2.9	$-235.9\pm$ 5.3	-379.5 ± 1.4	-83.3 ± 9.9	-149.5 ± 15.3	-159.9 ± 7.5	

References

[1] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529.

[2] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484.

[3] Erez, Tom, Yuval Tassa, and Emanuel Todorov. "Simulation tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX." Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015.

[4] Schulman, John, et al. "Trust region policy optimization." Proceedings of the 32nd International Conference on Machine Learning (ICML-15). 2015.

[5] Duan, Yan, et al. "Benchmarking deep reinforcement learning for continuous control." Proceedings of the 33rd International Conference on Machine Learning (ICML). 2016.

[6] Williams, Ronald J. "Simple statistical gradient-following algorithms for connectionist reinforcement learning." Machine learning 8.3-4 (1992): 229-256.

[7] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

[8] Kakade, Sham. "A natural policy gradient." Advances in neural information processing systems 2 (2002): 1531-1538.

Thanks for listening ;P